Applications of elliptic curves in public key cryptography

نویسنده

  • Andrej Dujella
چکیده

The most popular public key cryptosystems are based on the problem of factorization of large integers and discrete logarithm problem in finite groups, in particular in the multiplicative group of finite field and the group of points on elliptic curve over finite field. Elliptic curves are of special interest since they at present alow much shorter keys, for the same level of security, compared with cryptosystems based on factorization or discrete logarithm problem in finite fields. In this course we will briefly mentioned basic properties of elliptic curves over the rationals, and then concentrate on important algorithms for elliptic curves over finite fields. We will discuss efficient implementation of point addition and multiplication (in different coordinates). Algorithms for point counting and elliptic curve discrete logarithm problem will be described. 1 Factorization and primality testing and proving are very important topics for security of public key cryptosystems. Namely, the starting point in the construction of almost all public key cryptosystems is the choice of one or more large (secret or public) prime numbers. We will describe algorithms for factorization and primality proving which use elliptic curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Provably secure and efficient identity-based key agreement protocol for independent PKGs using ECC

Key agreement protocols are essential for secure communications in open and distributed environments. Recently, identity-based key agreement protocols have been increasingly researched because of the simplicity of public key management. The basic idea behind an identity-based cryptosystem is that a public key is the identity (an arbitrary string) of a user, and the corresponding private key is ...

متن کامل

Point compression for Koblitz elliptic curves

Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is an elliptic curve E over F2; the group E(F2n ) has convenient features for efficient implementation of elliptic curve cryptography. Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard rho algorithm for the discrete logarithm problem on Koblitz curves...

متن کامل

Pairing Based Elliptic Curve Cryptosystem for Message Authentication

Elliptical curve cryptography (ECC) is a public key encryption technique based on elliptic curve theory that can be used to create faster, smaller, and more efficient cryptographic keys. ECC generates keys through the properties of the elliptic curve equation instead of the traditional method of generation as the product of very large prime numbers. Because ECC helps to establish equivalent sec...

متن کامل

Isogenies of Elliptic Curves: A Computational Approach

The study of elliptic curves has historically been a subject of almost purely mathematical interest. However, Koblitz and Miller independently showed that elliptic curves can be used to implement cryptographic primitives [13], [17]. This thrust elliptic curves from the abstract realm of pure mathematics to the preeminently applied world of communications security. Public key cryptography in gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011